CrossValidationReport.inspection.coefficients#

CrossValidationReport.inspection.coefficients()[source]#

Retrieve the coefficients across splits, including the intercept.

Returns:
CoefficientsDisplay

The feature importance display containing model coefficients and intercept.

Examples

>>> from sklearn.datasets import make_regression
>>> from sklearn.linear_model import Ridge
>>> from skore import CrossValidationReport
>>> X, y = make_regression(n_features=3, random_state=42)
>>> report = CrossValidationReport(estimator=Ridge(), X=X, y=y)
>>> display = report.inspection.coefficients()
>>> display.frame()
split                    0         1         2         3         4
feature
Feature #0           74.1...   74.2...   74.1...   74.2...   74.2...
Feature #1           27.3...   27.5...   27.6...   27.5...   27.5...
Feature #2           17.3...   17.3...   17.2...   17.3...   17.3...
Intercept             0.0...    0.0...    0.0...    0.1...    0.0...
>>> display.plot() # shows plot